How to Make Your Events Pay Off

By Jorge Abrego
Acres U.S.A. Advertising Director

To better understand the best ways of yielding optimum ROI from your event spending, you first have to examine what role events play within your broader marketing strategy. Events enable you to skip a few steps in the early marketing funnel by allowing you to actually talk to a potential client about challenges and how your solution can help them add more value to their business.

While this confirms why you do events, maximizing your company’s investment requires that you don’t skip the necessary steps it takes to optimize both the quantity and quality of those leads, which should then lead to more high quality conversions.

People buy from people. And in ag this is certainly true. Which is why 68% of B2B marketers say that events are an effective demand generation strategy to acquire qualified leads that can be converted at a high rate. 68% is a high percentage, but given the fact that events are fantastic for facilitating personal interaction, building strong relationships and creating trust, why isn’t it higher?

Strategic Demand Generation

Too many companies struggle with maximizing ROI from B2B events because they aren’t planning and executing an event marketing plan that is integrated into their broader marketing strategy. An important guideline to keep in mind is that your overall demand generation strategy should include a healthy mix between digital marketing, print advertising and events.

According to B2B event marketing research, a healthy balance would be to spend around 35% of your marketing budget on events and 35% on digital marketing, with the remaining 30% spent on branding, content marketing, earned media, owned media and miscellaneous things like partner marketing and affiliate development.

A good way to look at it as that the latter, which primarily feeds the top of the funnel, supports and enhances the former, which feeds the middle and bottom of the funnel. So much so that when done correctly and with strategic forethought, it significantly increases the quantity and improves the quality of your leads.

Integrate B2B Event and Digital Marketing

Combining events and digital marketing requires companies to stop treating events and online marketing in separate silos. To get more ROI out of B2B events, you need to treat an event and digital marketing as one campaign. Too often, an event is considered a campaign and digital marketing as another campaign channel. Maximizing results requires merging and treating them as one campaign to improve customer experience and create an omnichannel approach to get your target audience to engage with you to improve ROI.

Understanding what you’re aiming at is a fundamental aspect of ROI evaluation and in B2B event marketing is 4:1. This means that for every dollar you invest, you should receive $4 in return on average. However, 44% of marketers only experience 2 to 2.5:1 event ROI. If your event ROI in a B2B environment is 2:1, then you need to figure out ways to improve your event marketing plan.

Of course, not every event will be successful. You will generate more revenue from certain trade shows and less from others. Therefore, you need to evaluate your ROI on more than one event and you should continuously tweak – but not dramatically change – your tactics to ensure you have a broader view of what works best to improve and refine.

If you’re routinely changing which events you sponsor then you’re not properly researching the value proposition and true fit. Also, you may not be building equity with the audience and your event partners. These two considerations are key in making sure you are hitching up with the right events to grow your business.

Optimize your pre-event strategy

At the core of your event marketing plan should be your pre-event strategy. What are you going to do to ensure you will maximize ROI post-event? B2B lead generation is tough and without a pre-event strategy, you likely will not yield the kind of ROI you’re hoping for.

In addition to working closely with your sales team to create a mutually agreed event lead coverage plan, the pre-event marketing plan should include how your team will leverage social media. These should be well-written posts that highlight important event content topics relevant to the problems your solution solves. In order to do so, work with your media/event partner to ensure you have the content agenda to help develop these posts since attendees will generally follow these hashtags and will see your posts.

Additionally, some event sponsorships include media as part of a package, so be sure to leverage those with content-relevant messaging. If your sponsorship doesn’t include media, leverage your event partner’s print and digital channels to amplify your sponsorship again by correlating your message to relevant event content themes. Nothing increases the quality and quantity of leads more than association to events and themes your “community” are interested in and passionate about.

Post- Event Strategy

Many CMOs will tell you that even though MQL (marketing qualified leads) follow-up is the domain of sales, marketing should play a role in continuing to nurture the lead by helping to build the relationship. A good way to do that is to make sure you capture key moments and news-worthy topics from the event to send out digital ads that tout them, and tie it into a special offer you’ve created just for event attendees as a way to thank them.

More than any other channel, events allow your company to be part of a community that shares a mission and vision that your company can play a role in bringing to life. So it makes sense to leverage your connection to the audience by touting the shared experience of an event in your messaging.

As for lead follow-up, be sure your sales team closes the follow-up gap to 1-2 days after the event. Especially if the contact is a senior-level person, you need to take into consideration that they are extremely busy and if you don’t follow up fast enough, they will have moved on and started working on other things. The caveat is that they will only talk to solution providers that are able to talk in business value. So take this into consideration.

Year-Round Engagement

Because events continue to grow in their marketing importance — assuming your events are on point and checking all the boxes for audience and content themes — working on your event game should be a year-round endeavor. Customer engagement should begin at the event itself for next year by working with your event partner to discuss ideas that can enhance the value of the experience to the audience and your company. Be proactive and leverage your association to the event’s themes and brand via webinars, white papers, podcasts and any other tactic which enables you to generate endemic engagement, build thought leadership and become a provider of rich content that delivers both direct and indirect value to the regenerative ag community we all serve.

Event marketers who do it well have realized that the real goal of an event marketing plan should be similar to the goal of any other tactic in their over-arching marketing strategy — the on-going engagement of your target audience to take the next step in the buyer journey. Recognized as one important part of a larger marketing ecosystem, events are being embraced as an integral aspect of working work hand-in-hand with an event or media partner in a unified effort toward the same shared outcomes: more loyal customers, and fuel for growing your business.

Learn more about advertising opportunities with Acres U.S.A. here.

Jorge Abrego is the Advertising Director for Acres U.S.A. and has 26 years of advertising agency and B2B media experience in the agriculture, energy and technology sectors.

“Built-in” Pest Management

Welcome to Book of the Week – a weekly feature offering you a glimpse between the pages of an Acres U.S.A. published title. Get the Book of the Week email newsletter delivered directly to your in box! This week’s Book of the Week feature is A New Farm Language, by W. Joe Lewis.

“You can’t have any good guys without a few bad guys. That’s fact.”

So says Alton Walker. Alton and I have been friends since our days at Mississippi State where we went through our master’s degree program at the same time. Also a native of Mississippi, Alton continued his education at Clemson University, obtaining a Ph.D. in entomology prior to his career in agricultural consulting and farming in Georgia. He and I came to have a shared interest in ecologically sound farming, and in the mid ’90s we collaborated with a team of scientists on sustainable cotton production following the boll weevil eradication. Alton is a scientist with some skin in the game. He’s pursued the application of his conservation/ecologically based ideas with cotton production on a 600-acre portion of his own farm.

As Alton will tell you, the common practice of cleaning a field down to bare soil after harvest and leaving it barren over the winter is a harmful practice for multiple reasons, including pest management as well as natural resource conservation. “Farming’s been the victim of the advances of highly mechanized ‘big farming’ approaches,” he says. “Through the use of large equipment like harrows, plows, and mowers, enormous portions of biomass are removed from countless stretches of land. The land is then tilled and planted into monocultures from ditch bank to ditch bank. Then, mechanical cultivation and chemical pesticides are used to restrict diversity, while fertilizers and irrigation foster a lush growth of crops. Every year, the process starts over, meaning there’s never an opportunity for a true, natural ecosystem to develop and remain in place for the length of time it takes for it to become balanced and efficient. It’s no wonder pest outbreaks occur. On the other hand, perennializing the field—growing something year-round—helps promote a much more stable and balanced environment. We have to find our way back to approaching farming, including pest management, with an understanding of how to manage the ecosystem in which we live.”

The team Alton and I collaborated with in the ’90s was an interdisciplinary group of researchers that included Sharad Phatak, Rick Reed, John Ruberson, and Jim Hook, and Glenn Harris with the University of Georgia, and Philip Haney with my laboratory in Tifton. Eradication of the boll weevil, which had been completed in Georgia in 1990, and, later, essentially all of the United States, presented the cotton industry with a unique opportunity to advance sustainable agriculture. The eradication had been one of the greatest technical successes in agricultural history, with immense potentials in economic and environmental benefits. To completely eradicate the presence of a pest of this magnitude from the entire cotton belt! In Georgia, insecticide use was already dropping sharply, with average crop revenues increasing markedly. By 1995, the use of fifteen to twenty treatments per year had been reduced to three to five treatments. Grower interest in biological control and sustainable agriculture had never been higher, but a shift in thinking on when and how to give nature more time was going to be needed. The boll weevil had been an invasive pest without any effective natural enemies. Quick to reach damaging levels in early season, it was an especially devastating primary pest because the necessary insecticidal treatment for its control regularly spurred a sequence of secondary pest outbreaks. But now, for the first time, we could put in place an ecologically based management system without the disruptive influence of the early season boll weevil treatments.

In this new era, we could promote the adoption of cotton production as part of a healthy year-round landscape system, with approaches to pest management that deal with the natural enemy/pest complex being a vital part of that overall system.

But to take advantage of this new era, we knew there needed to be a lot of educational outreach to the grower community, including on-farm demonstrations with associated data. Otherwise, we could miss the opportunity and drift back to pesticides as the dominant pest-management practice.

Figure 9a below shows the conventional high intervention methodology (Box 1) as contrasted to year-round landscape ecosystem management (Box 2). The conventional, high-intervention approach has predominated cotton production and pest management for years, particularly since the advent in the 1950s of big farming. After harvest, the field is mowed and harrowed, rendered barren until spring when the process starts over. Because of this winter and early spring “wipeout” of everything prior to planting, the ecosystem—as represented by the typical “ecological growth curve”—is never able to achieve equilibrium status. So, there are no relays of natural enemy/pest balances into the following season. As one consequence, the pests show up first with a lag time before the natural enemies can be expected.

During the growing season, the crop is kept clean of pests such as weeds, insects, and other undesired variables by thorough cleaning, pre-planting tillage, and other soil preparation and operations, and by diligent mechanical and chemical interventions during the growth and fruiting phase. Use of fertilizers, irrigation, and other inputs are used to ensure a lush, mono-cultural growth of cotton plants from one end of the field to the other. Other plants are considered undesirable and out of place. So, this lush abundance of cotton plants, without alternate vegetation as food sources and shelter for the natural enemies of pests, along with high frequency of mechanical and chemical intervention, creates an environment prone to disruption and resistance, ultimately leading to the pesticide treadmill. This is why, prior to the boll weevil eradication, the number of pesticide treatments for cotton production would sometimes approach twenty per season.

Moreover, the lack of winter cover and the high-intervention approach with substantial removal of the biomass, along with frequent harrowing and tilling, contribute to heavy depletion of organic matter and soil microbial quality, plus extensive water and wind erosion. All of this leads to a host of other issues including lower air and water quality; higher use of fuel, labor, and machinery wear; soil compaction; and the loss of associated wildlife.

Yes, after the boll weevil eradication, we had the opportunity to shift to a less disruptive, environmentally sound, sustainable approach as represented above (Box 2), but it was going to take some time and outreach to bring about such a change in practice. We were up against methods of farming that had dominated pest management in every cropping system for over sixty years. Rachel Carson’s call for concern had brought about change, but the change was to move to softer, less toxic pesticides. Still treating the symptoms, in other words. But we had come to understand that the real issue stemmed largely from a lack of understanding of how and why external interventions are disruptive and unsustainable, in contrast with sustainable “built-in” mechanisms, which we had concluded should always be the first line of defense.

I began having discussions about this lack of understanding with Sharad Phatak, a respected pioneer on the subject, and from whom I had gained much insight. We decided to present our case as a profession-wide argument in a highly respected publication. In 1997, he and I, along with Joop van Lenteren and Jim Tumlinson, published a paper in the esteemed journal Proceedings of the National Academy of Sciences of the United States of America (Proc. Natl. Acad. Sci. USA). Our paper, “A Total Systems Approach to Sustainable Pest Management,” stressed the urgent necessity for a fundamental shift in how we think about and approach agricultural pest management to resolve escalating economic and environmental problems. We drew on our discoveries to show that an ecosystem is just that—a system, with interactive parts that behaves not like a collection of unrelated pieces, but more like a living organism. We emphasized what we’d learned about the remarkable built-in mechanisms that agricultural ecosystems have, mechanisms that act through a set of feedback loops to maintain balance and to protect against herbivore feeding, diseases, climatic stress, chemical imbalances, and other similar attacks or interventions. To our great satisfaction, the paper turned out to be a major factor in reshaping foundations around sustainable agriculture at grower, research/education, and policy levels. The USDA Sustainable Agriculture and Education Agency adopted the paper for nationwide use as a standard in guiding constituents toward grant proposals and used it as a standard in developing a sustainable pest management brochure.

The gist of our argument then (as now) centers on the obvious contrast between our sustainable approach making use of the built-in defenses, and the interventionist “treadmill” approach. Figure 9b further illustrates this contrast. The built-in defenses respond only when, where, and at the level needed. They are need-induced and target specific. The chemical SOS signals sent by plants under attack are a perfect example of this. Parasitic wasps searching for these plant feeders, thereby rescuing the plants in distress, create pest control only in fields and around plants with actively feeding populations of caterpillar pests, thus avoiding non-target collateral damage and disruptions.

Furthermore, these parasite-host/predator-prey interactions are free of resistance and maintain balance, within fluctuating bounds, through a density-dependent phenomenon, meaning that levels of attack are determined by the availability of hosts or prey. On the other hand, external therapeutic interventions, such as applications of pesticides, act continuously at full level throughout the field without regard to need or target. The consequence is high collateral damage and disruption, and maximum selection for resistance. Next stop: the pesticide treadmill.

The interventionist approach is engrained deeply into not just the agricultural mentality, but in the way we, as a society, think about corrective actions in any system. You can observe the same treadmill effect in how we approach the health of the human body. On the surface, it seems that the proper corrective action for an undesired entity is to apply a direct external counter force, hence a “healthy” dose of antibiotics for infections or painkillers for pain. But there’s now a long history in medicine where it can be demonstrated that such interventionist actions never produce sustainable desired effects. They always become less effective requiring more and more to get results. The attempted solution eventually becomes the problem. You can find vivid examples with the growing resistance to antibiotics, and problems of addiction stemming from drugs for treatment of pain or mental distress. Black-market crime is on the rise as people seek illegal sources of drugs, just as it rose during the days of prohibition as an intended solution for alcoholism.

As a matter of fundamental principle, the application of external corrective actions into a system can be effective only for short-term relief. Long-term, sustainable solutions can only be achieved through a shoring up or restructuring of the natural system—in the case of the body, through nutrition, sleep, exercise, etc.—so that natural built-in forces, such as the immune system and other regulators that function on an as-needed basis, act effectively.

The same thing is clear with pest control strategies centered on toxic chemicals and other therapeutic interventions, such as prophylactic treatments. New and “better” pesticides are continually required, just as new and “better” antibiotics are continually required in the field of medicine. It’s a constant footrace with nature. The use of pesticides and other treat-the symptoms approaches are unsustainable and should be the last, rather than the first, line of defense. A pest management strategy should always start with the question, “Why is the pest a pest?” and seek to address underlying weaknesses in ecosystems or agronomic practices that have allowed organisms to reach pest status.

About the Author:

Dr. W. Joe Lewis is an award winning scientist, recognized worldwide for major crosscutting discoveries in the fundamental science of pest management. The models for his studies have been behavioral and chemical interactions of parasitoids, insect herbivores, and plants, along with ecosystem principles. The impact of his research is evidenced by over 200 refereed scientific publications and book chapters, including five papers in prestigious Journals of Nature and Science, and three in Proceedings of the National Academy of Sciences, and an invitational paper in Scientific American. His work has been highlighted extensively in the popular press, including CNN Science and Technology, BBC/ Discovery Channel, Business Week, National Public Radio and BBC Wildlife, Fortune Magazine, and NBC Today Show.

Titles of Similar Interest:

Fertilizer: What, Where & When

Welcome to Book of the Week – a weekly feature offering you a glimpse between the pages of an Acres U.S.A. published title. Get the Book of the Week email newsletter delivered directly to your inbox! This week’s Book of the Week feature is Advancing Biological Farming, by Gary Zimmer. 

There are a lot of different fertilizer sources out there — some that work well in a biological farming system and others that do not. Knowing the benefits and drawbacks of different fertilizer sources can help you make the right choice for your crop and for your farm. The following table and discussion covers the most common fertilizer sources and should help answer your questions on the pros and cons of using each.


Manure and compost are excellent sources of nutrients because they provide a blend of minerals in a form that is tied to biology. The difference between these sources of nutrients is how quickly they become plant available. Compost is a slow-release source of nutrients while manure is soluble, meaning it is quickly available to plants.

A farmer I work with found out the downside of applying a lot of soluble nutrients in the spring when he went out and applied 8,000 gallons of liquid manure to his fields and then planted soybeans. He was overrun with weeds. Some people say if you don’t compost manure the weed seeds in the manure will germinate and cause problems, but in my opinion that is only a small part of it. The bigger problem is the soluble nutrients in liquid manure that cause weed seeds already in the soil to germinate. I have problems with weeds on my farm when I put raw manure on the land in the spring, but I see fewer weeds after I apply compost. I don’t believe this happens because I have a problem with weed seeds in my livestock manure. Rather, raw livestock manure is full of soluble nutrients, which sets up conditions for weeds to germinate and grow. The nutrients in compost are stabilized and less soluble so fewer weeds pop up right after applying compost than after applying raw manure.

Green manure crops (or cover crops) and crop residues are also excellent sources of nutrients. Not only are green manure crops a means for holding onto nutrients so they can’t leach, tie up or erode, as the plants decompose they feed soil life, which releases nutrients in a very plant-available form. Similar to the comparison made of manure and compost in the previous paragraph, green manure crops and young, succulent plants are a source of soluble nutrients, while mature plants and crop residues are slow release. A young green manure crop worked back into the ground breaks down right away and immediately releases nutrients into the soil. You won’t find a trace of that green manure crop two weeks after it is worked into the soil. In contrast I can go out to a field and find corn stalks two years after a corn crop was harvested and the stubble worked into the ground. Mature plant residues break down much more slowly, and the nutrients in them take a long time to become plant available.

Nitrogen Sources

Like other fertilizers, nitrogen is sold based on solubility. If you look at the Fertilizer Sources table, you will see that anhydrous ammonia, ammonium nitrate and urea are all very soluble sources of nitrogen. As I’ve already discussed, I don’t recommend using anhydrous ammonia because I don’t believe it fits on a biological farm where the goals are to increase soil organic matter and humus over time.

I don’t usually recommend urea because it is unstable and can release ammonia gas into the soil, which is toxic to roots and soil life. Applied urea also needs to be kept at least six inches away from the seed so it does not inhibit root growth. However, using a small amount of urea is not always a problem. It is often found in small quantities in foliar sprays, and in that form I think it works well.

My preferred nitrogen sources are ammonium sulfate and pelletized chicken manure. They both have some soluble and some slow release aspects to them.

I can no longer use ammonium sulfate on my farm because it is certified organic and ammonium sulfate is not allowed by the organic rules, but I would use it if I could. It is excellent for spring application on corn, small grains and alfalfa because it has a warming effect on the soil, which extends the growing season. The other thing I like about ammonium sulfate is that the nitrogen source (ammonium) is hooked to sulfur, which is a needed element in a fertilizer program.

Chicken pellets from laying hens are high in nitrogen (from five to eight percent), and provide nitrogen in a form that is easily digestible by soil microorganisms. Next to manure and cover crops, chicken pellets are the source of nitrogen I use most on my farm.

If more nitrogen is needed on a biological farm, I often recommend ammonium nitrate (liquid 28 percent). Since we want to use as little nitrogen as possible to get the job done, placement, timing and add-ons like thiosulfate, humates or molasses can improve efficiency and allow a reduction in quantity. Another good option for an efficient nitrogen source that can save future trips over the field is polymer-coated urea, labeled as ESN (Environmentally Smart Nitrogen). The nitrogen in ESN is coated in a substance that breaks down from moisture and temperature, slowly releasing nitrogen into the soil. Farmers I know who use ESN have been very satisfied with its performance.

Fish meal, feather meal and animal byproduct fertilizers are also excellent sources of nitrogen, but they are very expensive. They work well as a supplement to other nitrogen sources, but are usually not practical as the sole source of nitrogen for a crop.

Legume cover crops are another excellent source of nitrogen, working well either as a stand-alone cover crop, or when interseeded into other crops. On my farm, I have had good success interseeding clover into my corn crop. Some legumes, like alfalfa and clover, can provide up to 200 pounds per acre of nitrogen per year. A legume cover crop will provide nitrogen two ways: first, as it is growing and fixing nitrogen in its root nodules, and second, when it is worked back into the soil and becomes food for microbes. Also don’t forget that cover crops have more benefits than just supplying nitrogen; they also build soil structure, prevent erosion and feed soil organisms.

Phosphorus Sources

Orthophosphoric acid, or orthophos, is a liquid phosphorus source used as an ingredient in many high quality liquid fertilizers. It is a readily available source of phosphorus for plants. However, because of its chemical make-up, it ties up quickly with other elements in the soil and may become unavailable within hours of application. Polyphosphoric acid, or polyphos is produced by dehydrating orthophos. This process makes it more stable so it stays in the soil longer before tying up with other elements.

MAP and DAP (monoammonium phosphate and diammonium phosphate) are highly soluble dry phosphate fertilizers. Both also contain nitrogen in the ammonium form. MAP has a lower pH and less ammonium than DAP, making it a better source of soluble phosphate and is easier on soil life. The commercial fertilizer industry makes soluble phosphorus fertilizers like MAP and DAP by taking insoluble rock phosphate and mixing it with an acid, like sulfuric acid, to create orthophosphoric acid. The phosphorus is then purified out, which means calcium, sulfur and other beneficial elements found in the rock phosphate are removed.

The final step is to mix the purified orthophosphoric acid with ammonia to create MAP (monoammonium phosphate) or DAP (diammonium phosphate). This process makes a highly soluble phosphorus source, but all of the other elements of the rock phosphate have been removed. I generally do not recommend DAP. It has a high pH which can damage root hairs, those fine hairs on roots that take up most of the water and nutrients plants consume. DAP is also high in ammonia and can release ammonia gas into the soil, which is hard on soil life.

My preferred phosphorus source is a blend of rock phosphate and a commercial soluble phosphorus source such as MAP. I like to include rock phosphate in the blend because I want to keep the calcium, sulfur and trace elements found in the naturally mined rock. I also don’t want to overdo application of soluble nutrients, which in the case of phosphorus ends up being a waste of my money since much of the phosphorus from a soluble source will tie up quickly in the soil. By applying a mix of rock phosphate and commercial phosphorus, I get a good blend of soluble and slow-release phosphorus.

If I have acidic soil that needs phosphorus and calcium, that is the perfect time to add a rock phosphate soil corrective. The acidity in the soil will speed up the breakdown of the rock phosphate, and I get as much calcium out of it as I would if I put lime on. If I don’t have an acidic soil, it will take a long time for the phosphorus to become plant available unless I have abundant soil biology. Regardless of soil pH, phosphorus uptake is tied to soil biology. Planting a cover crop like oats, rye or buckwheat can stimulate soil biology and help plants access phosphorus in the soil. Plants with more acidic roots, like oats and buckwheat, can extract more phosphorus from the soil reserve and from rock phosphate. These plants hold that phosphorus in their tissues, putting the nutrient into a biological cycle. This interaction is a vital part of the system. If you put rock phosphate on a hard, dead soil without any life in it and no green plants growing, the opportunity for that phosphate to show up is pretty minimal.

Calcium Sources

High calcium lime (close to 35 percent calcium) and dolomitic limestone (close to 20 percent calcium and 12 percent magnesium) are mined calcium sources that are very slow release. They are a good source of calcium for acidic soils. Just as acidity helps release the nutrients from rock phosphate, acidity breaks down high calcium lime or dolomitic lime. On soils that are neutral or higher pH, these sources will not supply much plant-available calcium. To get more calcium on soils that are not acidic, a source of calcium that’s more soluble is needed.

When I started working as a farming consultant I went in search of a soluble calcium source. I found a source of lime (calcium carbonate) that was finely ground, had been burnt in a kiln, and then hydrated to remove the caustic effect of burnt lime. At the time I had no idea that by putting calcium carbonate through a kiln the carbon was burned off and what was left was soluble calcium. In addition, being a natural, mined material and a byproduct of manufacturing meant this calcium source also had some sulfur and other beneficial materials in it. When I applied the hydrated burnt lime to the ground, I got a calcium response in the plant right away. It worked wonders on my alfalfa crops. Later my partners and I developed a product from the hydrated burnt lime called Bio-Cal. Over the years I’ve seen wonderful responses from the application of Bio-Cal, especially on legumes. Unfortunately, I can no longer use Bio-Cal on my organic farm because it is burned and thus it is considered synthetic. We therefore developed OrganiCal to take the place of Bio-Cal on organic farms. It is a soluble source of calcium similar to Bio-Cal, but rather than burning the limestone it is finely ground and blended with acid binders and sulfur. This makes it more plant available than straight limestone, and because it is not burned or processed, it is approved for use on organic farms.

HumaCal is another calcium product my colleagues and I developed. It is a blend of finely ground limestone and gypsum with humates. Humates are large, complex molecules that have a low pH and contain a lot of sites that hold on to nutrients like calcium. This means that humates can help break down rocks like limestone into a plant-available form, and can also hold on to the plant-available nutrients so they don’t leach or tie up. This makes humates an excellent material for blending with a lot of nutrients, including calcium. I have done quite a bit of research on HumaCal demonstrating that it provides plant-available calcium, and I’ll talk more about this in the next chapter. Gypsum, which is calcium sulfate, is more soluble than lime. I like to use gypsum on my land when the soil is high in magnesium because gypsum is not only a source of calcium, it also supplies sulfur. The sulfur will hook to magnesium in the soil and form Epsom salts (magnesium sulfate) which is very soluble. That means it makes the magnesium more plant available but it also leaches, so it washes some of the excess magnesium out of the soil. Calcium nitrate and calcium chloride are both very soluble sources of calcium.

Calcium nitrate is often used as a foliar on high value crops because not only is it a good source of available calcium, it also supplies soluble nitrogen. However, it is a very expensive way to provide calcium, so it is generally only used on high value crops like potatoes and other vegetables. Calcium chloride is better known as road salt. It is also used as a foliar spray, but less often. Even though it supplies soluble calcium, it does have chloride, which has some negative side effects.

About the Author:

Gary Zimmer is an organic dairy farmer, an accomplished speaker, a sought-after farm consultant and president of Midwestern BioAg, a biological farming products and services company. He is also the author of The Biological Farmer, the prequel to Advancing Biological Farming.

More By This Author: 

Save money and order the Advancing Biological Farming/The Biological Farmer Combo here. 

Be sure to check out the Gary Zimmer audio collection for a complete selection of his previous Eco-Ag Conference seminars!

Titles of Similar Interest:

Insect Damage

Welcome to Book of the Week – a weekly feature of an Acres U.S.A. published title offering you a glimpse between the pages! Get the Book of the Week email newsletter delivered directly to your inbox! This week’s Book of the Week feature is The Non-Toxic Farming Handbook by Philip Wheeler and Ronald Ward. 

Insects and insect damage have been called the “farmer’s curse.” It is true that each year millions of tons of produce, grains, and fruits are destroyed or damaged by insects. Insects account for a 13-16 percent loss from $244 billion in crops annually in the United States. Insect numbers count in the billions and their collective weight by far surpasses the collective weight of mammals. Of more than a million zoological life forms identified and categorized by scientists, more than 800,000 consist of insects. It is believed that as many as 10 million insects remain as yet to be identified. Aside from our annoyance with these pesty critters and their attacks upon crops, pets, and livestock, what is their purpose?

Insects actually benefit man. Estimates of the value of insect pollination from honey bees and wild bees alone amount to approximately $30 billion annually in the United States. Insects pollinate fruits, berries, grapes, and field crops including peas, onions, carrots, clover, alfalfa, and flowers. In addition, insects provide millions of dollars annually in the form of such items as honey, shellac, and silk.

Many insects are actually beneficial to man because they devour insects harmful to our crops. Ladybugs, for example, will eat aphids. These predators play a useful role in maintaining balance within the insect kingdom.

Less than 1 percent of the insect species are considered harmful. About 1,000 species are considered serious crop pests, another 30,000 species are described as minor crop pests. Their control cost is only slightly less than the value of the crops they would have destroyed if left alone. In 1995, worldwide expenditures for pesticides hit $37.7 billion; U.S. expenditures came in at $11.3 billion.

Conventional Control

Insecticides are the modern mode of insect control. Insecticides come in either dry or liquid form and are either dusted or sprayed. They are used to prevent insect damage as well as to kill the insects after they have arrived. Insecticides come in several types. Some are stomach poisons which react within the insect after being consumed. Others kill on contact. Others, called systemics, are absorbed by the plant or animal and affect the insect after it bites the treated host.

Now that public awareness has increased and public opinion has caused the EPA to review pesticides, it is expected that many will not be allowed to remain on the market. This scenario has prompted Steve Brown, Auburn University Extension Service, to list several alternatives for farmers to consider. These can be considered as part of an IPM or Integrated Pest Management program.

  • Select insect-resistant varieties.
  • Calculate closely such variables as planting dates and row spacing.
  • Take advantage of crop rotation benefits.
  • Utilize pheromones (insect sex attractants) to capture or disrupt insects or introduce predator insects.
  • Utilize the biological pesticides which are available.
  • Consider trap crops in certain instances.
  • Utilize plastic mulch.
  • Consider soil solarization, using clear plastic.
  • Utilize machinery which sucks insects off plants.

Although these suggestions represent creative solutions to a growing reality, they miss the mark in that they don’t address the cause for the insect infestation in the first place. Once the variables influencing insect attack are understood, steps can be taken to remedy these causes. Addressing the cause will produce more lasting results.

Infrared Signals

Dr. Philip Callahan, renowned authority on the corn earworm and author of The Soul of the Ghost Moth and numerous other books, has studied insects extensively in his role as USDA researcher. His research indicates that insects communicate via infrared signals which are received and sent by the insect antennae which occur over much of their bodies. Each insect is apparently sensitive to certain plant signals and ignores others. Most damaging insects are selective in what they attack. Thus, the alfalfa weevil would not infest elm trees.

Antennae of the male cecropia moth. Insects, like this moth and others, can detect much information from plants via their antennae.

Infrared signals are emitted naturally by all living plant or animal bodies as well as from the gaseous emissions of all plant and animal life. Signal strength and configuration are affected by a variety of factors including nutrient balance and stress factors. Insects detect these signals with their antennae.

Upon close examination, it is evident that each species of insect has an antenna shape unique to its species. According to Dr. Callahan, the shape of the antenna determines the signal range received by the insect. Thus, the shape of weevil antenna allows it to be attracted to alfalfa frequencies.

When plants are grown in a soil with balanced nutrients and the plant itself utilizes those nutrients in a balanced manner, its own system will maximize its genetic potential in terms of yield and health (or resistance to stress). However, when the soil is out of balance, when normal growth stresses, e.g., drought, excess water, heat or cold, wind or hail occur, the plant may require other nutrients to counteract the stresses at hand. The extent those nutrients are missing is the extent the plant will suffer and, eventually, deviate from its genetic potential.

The infrared signals given off by the plant will modify depending upon the health of the plant. As the plant moves further from ideal health, the signals become more pronounced in a way that attracts insects. This can be shown by taking refractometer readings and observing that the brix reading measured as percent sucrose on attacked plants is lower than plants not being attacked. The brix reading is a good indication of the efficiency of the plants’ output of carbohydrates which is the result of photosynthesis.

Soil Balance-Imbalance

A properly balanced soil will have sufficient quantities of organically active carbon — humus — which helps hold nitrogen in the ammoniacal form. In soils lacking this active carbon content, the soil will give up this ammoniacal nitrogen to bacterial conversion into nitrates or directly to the atmosphere in gaseous form. During the process of ammoniacal nitrogen leaving the soil, it passes by the plant and can act as an amplifier of the infrared signal coming from the plant. Whereas the plant may have been initially broadcasting the signal, “I’m not balanced nutritionally,” the signal now reads, “Come and feed on me!”

Dr. Reams taught that most insects do not attack healthy plants. His whole approach to plant fertility and insect control capitalized on supplying the soil balanced forms of plant food which, in turn, maximized plant health. Insects look for signals coming from unhealthy plants and seldom attack healthy ones. Insects willingly eat weeds and will return to that practice in fields with healthy crops and soils and unhealthy (low brix) weeds. The attacking of weeds by insects is one of the signs to look for in observing your progress toward sustainable agriculture.

Failing Plant Health

The research conducted by Dr. Callahan and Dr. Reams has immense implications. If insects attack unhealthy plants and ignore healthy plants, they are telling a sad story about the fertility approaches as currently practiced. By attacking unhealthy plants, insects are actually benefiting humanity by pointing out which plants are unhealthy, low in mineral content, and not fit for human or animal use. The astute farmer views insects, as he views weeds, as messengers of soil or crop conditions, not the cause of them.

Natural Control

Many farmers are beginning to work with the IPM (Integrated Pest Management) approach to insect control. President Clinton once announced his intention to have a large percentage of U.S.A. crops grown under IPM by the year 2000 in an effort to reduce the amount of toxic chemicals used.

This concept consists of setting out insect traps baited with the sex scent (pheromones) of insects and then observing insect populations. If the insects are present, but in a number below that which would cause significant crop damage, no spraying should occur. If the population indicates significant crop damage will occur, steps are taken to control their numbers, hopefully with non-toxic materials. Other aspects of IPM include the release of mating disruption pheromones or predator insects to devour the harmful ones present on the crop.

Increasingly, farmers are turning to non-synthetic pesticide options such as botanical, microbial or predator approaches. These consist of using plant extracts such as nicotine from tobacco leaves, pyrethrum from flowers, rotenone from roots as natural insecticides; using plant extracts such as garlic juice and capsicum from peppers as repellents; microbial vectors that destroy harmful microbes or larger organisms; and predatory insects to control insect pressures.

Ladybugs and lacewings are traditionally welcomed in the field as a predator of moths and other destructive insects. Additionally, their presence usually indicates a relatively low level of toxic contamination in the field, since they are also killed off by toxic sprays. Ladybugs usually are considered an indication that the field environment can sustain beneficial insect life.

It is important to consider using a foliar nutrient or feed with any type of insecticide whether synthetic or natural. Any plant under attack by insects is mobilizing its defenses. This requires nutrient and energy utilization. Wouldn’t it be wise to give some “chicken soup” to your crop along with anti-insect treatment to aid in its recovery?

An interesting natural product for insect control is diatomaceous earth. D.E., as it is commonly called, consists of the shells of tiny fresh or sea water diatoms which have been deposited on old lake beds over millions of years. They are mined and milled into powders for feed or for use as a filtering agent in swimming pools. The swimming pool product cannot be used in feed as it will damage the animal consuming it. Since it will absorb many times its weight in water, D.E. is considered to be an anti-caking ingredient for feed. It is often fed by alternative ag farmers, not because of its anti-caking properties, but because of claims it will control parasites in animals. Although it feels like talcum powder to the touch, you would see extremely sharp edges under a microscope. Supposedly, when the substance comes into contact with an insect it will scratch the insect’s cuticle. Death often follows from dehydration. How it works internally is not fully understood. Some think it de-energizes the parasite in the stomach.

Although only a few brands of D.E. on the market have gone through the EPA registration requirement to be considered a pesticide, other brands could work the same. Recent university research has shown that the vegetable oils used with pesticides may also give excellent insect control when used alone. However, the EPA has yet to “catch up” with this information and give its full “blessing.”

Could it be that insects and weeds are symptoms of a problem rather than problems themselves? Could it be that fertility approaches exist which can correct these basic problems exemplified by insect and weed pressures? Are these pressures related to fertility practices? If this is the case, how does the farmer determine the correct fertility program to use?


Philip A. Wheeler has worked as the technical advisor and consulting agronomist for Crop Services International in Grand Rapids, Michigan. CSI is a soil testing lab and consulting service operat­ed by Phil and his wife Louisa. He is a national lecturer on biological and sustainable agriculture and its relation to nutrition and health. An amateur dowser, graphologist and meta­physician, Phil also enjoys composting and gardening. He is a member of American Mensa.

Ronald B. Ward grew up in suburban Grand Rapids, Michigan. At the age of 9 his parents bought a 50-acre farm 25 miles away from their city home. He obtained a B.S. in park management from Michigan State University; a master’s of divinity from Asbury Theological Seminary; and a master’s in community counseling from the University of Kentucky. After working for and eventually directing the Lexington Central Kentucky Re-ED Program for emotionally disturbed children, Ron returned to his country roots where he was introduced to alternative health and the Reams method of testing urine and saliva.

Titles of Similar Interest: